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I I 

ABSTRACT-A technique for following the circulation of a 
tracer in a turbulent fluid is developed from the integral 
form of the mass continuity equation. Numerical methods 
based on this technique are shown to be stable, to ensure 

that the total tracer mass is conserved, and that the mass 
in any region is always nonnegative. As an illustration of 
the utility of the technique, a numerical method is de- 
veloped for a two-dimensional model of the stratosphere. 

1 INTRODUCTION 

Consider a substance (“tracer”) initially fed into a local- 
ized region of a fluid in turbulent motion. The time rate of 
change of the spatial distribution of the tracer is deter- 
mined by the mass current, j, of the tracer, where 

j = p x v .  (1) 

Here, p is the density of the fluid, x is the mass of tracer 
per unit mass of fluid, and v is the fluid velocity. If all 
these quantities are written as the sum of a time average 
value (over a time that is long compared with the 
characteristic time of the turbulence) and a fluctuation 
from this value, eq (1) becomes 

- 
j +  j ’ = ( P + p ’ ) ( T i + x ’ 3 ( ~ + v ’ ) .  (2) 

Neglecting fluctuations, p‘, in the fluid density gives 

(3) 

According to the eddy diffusion prescription (Hinze 
1959), the last term in this equation may be replaced 
approximately by a linear function of the components 
of the gradient of the mean mass ratio X; that is, 

The first term on the right side of eq (4) represents move- 
ment of the tracer by mean motions of the fluid (winds 
if the fluid is the atmosphere), and the second represents 
spreading of the tracer by eddy diffusion. In  contrast 
to the molecular diffusion coefficient, which is a scalar, 
the eddy diffusion coefficients form a second-rank tensor K. 

The time evolution of the tracer concentration may 
be studied using the tracer mass continuity equation. 

The differential form of the equation is 

ass p--=-V.jfs at (5) 

where s is the net rate of change of tracer density due to 
sources and sinks. In any complex system, the time 
evolution of the tracer mass is generally determined 
numerically. Most commonly, the numerical method 
is based upon eq ( 5 ) .  This entails selecting a set of grid- 
points throughout the fluid and representing the time 
and space derivatives a t  each gridpoint in finite-difference 
form . 

In this paper, however, we consider numerical solu- 
tions based on the integral form of the continuityequation, 
so that only fist-order spatial derivatives occur in the 
expressions obtained for the time dependence of the 
tracer mass distribution. The region occupied by the 
fluid is divided into N “boxes”. The time rate of change 
of tracer mass within any box is then equal to the flux 
through its boundaries plus the net rate of change due 
to sources and sinks. The fluxes may be calculated from 
the mass current, I. In finite-difference form, the fluxes 
for a given box may be expressed as linear combinations 
of tracer masses in the box itself and in adjacent boxes. 
The coefficients of the tracer masses are then functions 
only of eddy diffusion coefficients and winds. If each 
tracer mass within a box is treated as a component of 
an N-dimensional vector, m, the continuity equation 
takes the form 

@=Am+S. dt (6) 

A is an N X N matrix of coefficients at, depending on 
eddy diffusion coefficients and winds; the presence of 
winds makes Anonsymmetric. S is an N-vector represent- 
ing the rate of change of the masses due to sources and 
sinks. 
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The time derivative may also be expressed in finite- 
difference form. Most simple is the first forward-difference 
approximation 

In section 4, we consider a two-dimensional system and 
give an example of a numerical scheme satisfying these 
constraints. Finally, in section 5, we demonstrate the use 
of the numerical methods on a two-dimensional model of 

-- I m(t+At>-m( t ) ,  At>o.  (7) the stratosphere. The nonnegative property of the masses 
at At  and conservation of mass are verified, and the mass 

distribution is shown to converge to the equilibrium 
state. Combining this with eq (6) leads to 

m ( t  + At) = (I + A At) m (t) + S ( t )  At, (8) 

where I is the N X N  unit matrix. 
The physical system is such that tracer masses in any 

region are nonnegative. If the fluid is enclosed by im- 
penetrable boundaries and there are no sources or sinks, 
then the total tracer mass is conserved. It is difficult to 
ensure that finite-difference equations based on the 
differential form of the continuity equation [eq (5 ) ]  also 
exhibit these properties without using some ad hoc cor- 

2. PROPERTIES OF THE NUMERICAL 
PROCESSES-NO SOURCES OR SINKS, 
IMPENETRABLE BOUNDARIES 

In this section, we consider eq ( 6 )  and (8) with S = O  and 
impenetrable boundaries. Constraints (9), (lo), and (11) 
are imposed. We f i s t  discuss the conditions of nonnegative 
tracerm asses and the conservation of tracer mass, and 
conclude with a discussion of stability. 

Nonnegative Tracer Masses rection procedure. As will be demonstrated in section 2, 
the masses satisfying eq (6) are conserved and nonnegative, 
provided the coefficients at, satisfy the following con- 
straints : 

(9) 

If any inital set of nonnegative tracer masses is allowed 
in eq ( 6 ) ,  constraint (10) is a necessary condition for the 
masses to  remain nonnegative. This can be seen by taking aij<O, j = 1 , .  . . , N ,  
an initial distribution with all tracer mass in the kth box; 

( l o )  that is, 

( 1 1 )  

aij 10, 

c a*,=(), 
i , j = l ,  . . . , N ;  izj, 

m,(t)=m6,,, j=1 ,  . . ., N .  (13) 
and 

Then, from eq (6), 

N 

i=l 
j = 1 ,  . . . , N .  

(14) am, -=E at,mj=mae. 
dt  f 

Constraint (10) is required to ensure that the masses in 
boxes other than the kth do not decrease. 

Similar considerations apply to eq (8). There is, how- 
ever, an additional constraint on the time step, At. If the 
distribution given in eq (13) is substituted into eq (8), 
we find 

m,( t + A t )  = ( 1 + A  ta,,) m.  

It will also be shown that these constraints ensure the 
stability of eq (6). By adding a further constraint on At 
[eq (28)], one may show that the properties of conservation 
ahd nonnegativity of masses and stability also hold for 
eq (8). 

Our approach is similar in spirit to that of Arakawa 
(1966) who obtained stability in the numerical solution of 
the Navier-Stokes equation by requiring the finite- 
difference scheme to conserve mean kinetic energy and 
mean square vorticity. 

Although numerical models satisfying the appropriate 
constraints just mentioned are stable and guarantee mass 
conservation and nonnegative masses, they do not, 
therefore, necessarily give accurate results. In particular, 
we do not treat the problem of “spurious diffusion’’ that 
arises from the interaction of wind terms with a finite 
mesh size and leads to  dispersion of mass in addition to 
that due to the diffusion coefficients K.  This problem is 
also present in numerical schemes based on the differential 
form [eq (5)]. In practice, it  can be overcome by using 
sufficiently small steps in space and time; this is clearly 
undesirable from an economic viewpoint. 

In  section 3, we generalize the above to the case with 
sources and sinks and penetrable boundaries that allow an 
efflux of tracer. It is found that the third constraint 
[eq ( l l ) ]  must be replaced by 

(12) 
N 

i = l  
Car&O, j=1,  . . ., N .  

Since O ~ , ~ < O ,  a negative mass can be obtained unless 

1 
A t < -  I anlax I 

where amaZ is the diagonal element a,, of largest modulus. 
Constraints (10) and (15) together form a sufficient 

condition for nonnegative masses in eq (8). Suppose that 
at time t all masses are nonnegative. The tracer mass in 
the ith box at time t+At  is 

mt(t+At) = ( 1  + A t a d  mt( t )+Atxar j  mj( t )  
j f i  

2( l+Ata t t )mi ( t )  

because of inequality (10). Thus, m f  ( t+At)  2 0  provided 
inequality ( 1 5 )  is satisfied. Since eq (6 )  can be obtained 
from eq (8) by taking the limit At+O, in which case 
constraint (15) is automatically satisfied, constraint (10) 
by itself is a sufficient condition for nonnegative masses 
in eq ( 6 ) .  
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Conservation of Tracer Mass AT, of A has an eigenvector with all components equal, 
corresponding to  a zero eigenvalue. 

variables m’ be defined by a 
nonsingular linear transformation 

Suppose that initially all tracer is in the kth box as in 
eq (13). Except in the trivial case where there is no bran- 
port of tracer, conservation of tracer mass requires the 
mass in the kth box to decrease. From eq (14) [based on 
eq (S)], we see that (Ykk must, therefore, be negative; 
that is, constraint (9) must hold. Moreover, by summing In  the transformed equations of motion, the matrix 
both sides of eq (14) over i and invoking conservation 
of tracer mass, we obtain constraint (11); that is, 

Let a new set of 

Tm’=m. (20) 

of coefficients is 
A’=T-lAT. (21) 

T may be chosen so that A’ is in Jordan canonical form, 
i=l consisting of nonzero blocks (submatrices) along the 

diagonal and zero blocks elsewhere. The Zth block has 
all its diagonal elements equal to one particular eigenvalue 
A t  of A (or A’), all elements directly above the diagonal 

The transformed equations of motion consist of a number 
of independent sets of differential equations, one for 

Re h<O tends to zero as t-+w (Bellman 1960). 

with h=O, then 

N 
CCYflc=O. 

these constraints be derived in the same 
manner from eq (8). 

and (8) for any initial distribution of tracer since 
Equation (11) ensures coIlservation Of in eq (6)  equal to unity, and all other elements equal to zero. 

yr x a  tj 771 j = m j c a  f j = 0. 
r j  I I each block. The part of m’ lying in a block with eigenvalue 

Therefore, using eq (6), we get If denotes the part of m’ corresponding t o  a block 

E=CE (22) 

and, using eq (8), we get where C is a matrix with all elements directly above the 
diagonal equal to  unity and all other elements equal to 
zero. If C is r x r ,  then Q=O and 0 - l  has all elements 
equal to zero except for a one in its top right corner. 

C m d t  +At) = CC(stj+Ataij) mj(t> 

= C m * ( t > .  

i i j  

The solution of eq (22) with initial value f ( 0 )  is 
i 

Stability 

Equations (6) and (8), with S = O ,  are stable if the tracer 
mass distribution m evolves to an equilibrium distribu- 
tion m given by 

(16) Am=O 

where the sum of the components of m is equal to the 
sum of the components of the initid distribution. 

Consider first the stability of eq (6). Constraints (9)- 
(11) together imply that 

A 

A 

A 

It follows from constraint (9) and eq (17) that any eigen- 
value X of the matrix A satisfies 

I X-Qmx I I ICU,,, I (18) 

(Varga 1962) where a,,, is the diagonal element of A with 
the largest modulus; that is, any eigenvalue of A lies in 
or on the circle in the complex plane whose center is at 
amax= -(amax( and whose radius is (amall. In particular, 
this implies that 

the equality holding only when h=O. 
There is a t  least one zero eigenvalue of A. This follows 

directly from eq ( l l ) ,  which implies that the transpose, 

Re h<O, (19) 

For large t ,  the dominant term [except for special 4(0 ) ]  
is the term in P-l; that is, 

Cr-1 
(r-l)! tr--lg (0). (24) 

If r >1, the magnitude of expression (24) tends to infinity 
as t +m.  The magnitude of the corresponding vector of 
masses m(t) also tends to  infinity. This contradicts 
conservation of total mass, hence r = l .  That is, each 
zero eigenvalue of A is associated with a 1x1 Jordan 
block, and eq (22) becomes 

t=O. (25) 

The equation of motion [eq (6)] is therefore stable. 
The stability of eq (8) may be analyzed with the help 

of the same transformation to oblique coordinates m’. 
The transformed equation of motion is 

m’(t+At)=(I+A’At)m’(t). (26) 

If is the part of m’ corresponding to a zero eigenvalue 
of A‘, then it corresponds to an eigenvalue 1 of I+A’At. 
Accordingly, 4 is constant; that is, 

#( t+At j  =€(t).  
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Let US now consider the other parts of m' correspond- 
ing to Jordan blocks with eigenvalue A Z O .  It follows 

center l+a,a,At=l-\am,x\At and radius \amx\At .  In- 
equality (15) for At then implies that 1+XAt lies in or on 

therefore satisfy the inequality (Varga 1962), 

from eq (18) that l + A A t  lies in or on the circle with ReX<O. (32) 

The formal solution of eq (6) is 
the unit circle. Suppose, for a particular value At of At 
and for nonzero X, that m(t)=[exp (At)-I]A-'S+exp (At)m(O), 

11 +Gtl=l .  which, in view of inequality (32), converges as t+m to  

Then, for At<&, , m=-A-lS. 

Similar arguments show that inequality (32) must also 
(27) 

Hence, if inequality (15) is replaced by be satisfied & the case of eq (8). After n time steps At, 

1 A t < - - - - j  
b m a x l  

0 .  inequality (27) is guaranteed for any nonzero eigenvalue. 
The corresponding parts of m' accordingly converge to  
zero (Varga 1962), and the integration process based on 
eq (8) is stable. 

3. STABILITY IN THE PRESENCE OF STEADY 
SOURCES AND A PENETRABLE BOUNDARY 

Assume that all sources are steady and lie inside the 
region, that there are no sinks inside the region, and .that 
the flow of tracer across the boundary is outward only. 
The full eq (6) must be used; that is, 

d*)=Am(t) at +S, 

where the source vector, S, is independent of time. 

therefore, 
In  the case S=O, the total mass cannot increase; 

for any set of nonnegative masses mi. If the special set, 
mj=msjk, is substituted into eq (29), inequality (12) 
results; that is, 

c..*lc IO, k = l ,  . . . , N .  
i 

Inequalities (9) and (12) together imply that 

Further, if box k is on a penetrable part of the boundary, 
the total mass must decrease, so 

This must be true for at least one value of k.  
The matrix A may be taken to be irreducible (if it were 

m( %At) = (I +At A) "m( 0) + (I + At A) n-lAtS 
+(I+AtA)n-2AtS+ . . . +AtS . .  . 

- - l--(l+AtA)nAtS + (I+ A tA)"m(O) . I-(I+AtA) 

Inequality (27) implies that ( I+At A)" tends to zero 
as n-9~0, and the whole expression tends to the limit 
-A-'S (which is independent of At).  Thus, the finite- 
difference equation [eq (S)] is stable. 

4. EXAMPLE-TWO-DIMENSIONAL MODEL 
OF THE STRATOSPHERE 

In this section, we demonstrate how the preceding 
methods can be applied to the two-dimensional eddy 
diffusion model of the stratosphere proposed by Gudiksen 
et al. (1968). These authors used a numerical scheme 
based on the differential form of the continuity equation 

In  the following derivation of a numerical form of the 
mass transfer equation, several approximations and physi- 
cal assumptions are made. These are justified in the course 
of an analogous derivation done by Reed and German 
(1965), whose terminology we adopt where appropriate. 

Equation (4) for the mass current, I, may be rewritten 
in the form 

j=cv-pKv - (33) 

[eq (511. 

c> - -- 

where i5 = p is the average concentration density of the 
tracer. Spreading in the longitudinal direction is rapid 
compared with spreading in the other directions and is 
assumed to result in a concentration of tracer nearly 
independent of longitude. The meridional and vertical 
components of the mass current are accordingly assumed 
to depend only on the meridional and vertical components 
of the gradient of the mean mass ratio X. In  a spherical 
coordinate system, 

not irreducible, the time evolution of a subset of the 
masses would be independent of the remaining masses). 
Inequalities (30) and (31) then imply that the matrix A 
is "irreducibly diagonally dominant"; its eigenvalues 

Here r=a+z, where a is the radius of the earth, z is the 
height above the earth's surface, and 4 is the latitude. 
Since z<a, it is a good approximation to replace T by a, 
as will be done in later equations. 
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A 

t z (upward) 

FIQURE I.-A grid representing a set of neighboring boxes. The 
longitudinal direction extends perpendicular to the page. 

If we further assume that p is a function of z only, we 
find that the meridional and vertical components of 3 are 

- az a? j,=?(Z- rK,J - K,, - K,,Z ay- 

and; and il and K,,, KUz =Kz,  and K,, are the components 
G f  V and K, respectively. The last two terms of each com- 
ponent in eq (34) represent direct diffusion and cross 
diffusion, respectively. The first terms are due to winds; 
note that the transformation from spherical polar to two- 
dimensional Cartesian coordinates has introduced extra 
terms with the same mathematical form as winds. 

Equation (34) is an appropriate starting point from 
which to develop numerical solutions having the prop- 
er ties of mass conservation, nonnegative masses, and 
stability. There are many possible numerical systems en- 
suring these properties. The following particular system 
is a simple, straightforward one. 

The stratosphere is divided into boxes for which the 
boundaries are orthogonal surfaces of constant z and con- 
stant y a t  intervals of Az and Ay, respectively. The rate of 
change of mass in a box due to winds and eddy diffusion 
must be calculated. The mass current a t  the face of a 
box may depend upon the position in the face because of 
spatially varying i or K. To obtain the mass flux through 
a face, we use for simplicity the zero-order term of a 
Taylor expansion for 3. Thus, the mass flux across a face 
is the appropriate component of the mass current dong 
the middle of the face, times the face area. The horizontal 
mass flux from the box centered at  (y, z )  to the box at  

. 

(Y + 4% 2) is 

Similarly, the vertical mass flux from the box at  (y, z) to 
the box at  (y, z + Az) is 

The terms in parentheses after j v  and ?, indicate where 
the currents are to be evaluated. We must express j', (y+ 
%Ay,z) and j,(y,z+@z) in a finite-difference form that 
ensures that conditions (9), ( lo),  and (11) or (12) are 
satisfied. Consider the system-of boxes as shown in figure 1.  
Let m, represent the mass enclosed by box i, and let 
c I  be the concentration at  the center. First we give an 
expression for the change in m5 in a time A t ;  then the 
rationale for the form of this expression is detailed. The 
change in m5 is found from 

m,(t+At>=m,(t) 

(35) 

) analogous terms due to fluxes through 
the faces bordering 2, 4, and 8 

+&',At. 

The notation (y+gAy,z) outside of the braces means 
that the wind and eddy diffusion coefficients are evaluated 
at  this point. The form of the terms due to fluxes through 
the faces bordering 2, 4, and 8 is analogous to that shown 
for face 6. Explicit expressions may be obtained using 
the above set of boxes rotated through 90°, 180°, or 270O. 
S, describes sources for box 5. 

This equation simply expresses (in approximate form) 
the fact that the rate of change of mass in a box is equal 
to the net flux across the boundaries plus a source term. 
I t  employs the first forward-difference formula [eq (711 
to approximate the time derivative h / d t  and employs the 
simple but valid finite-difference approximations for the 
spatial derivatives $/ay and a&3z. Note also that the 
effective wind is made to multiply the concentration of 
the box from which it' is blowing. 

The sign-dependent choices in eq (35) and the partic- 
ular choices of finite-difference expressions are designed 
to ensure that conditions (g), (lo), and (11) or (12) hold. 
To show that these conditions hold, we first substitute 
masses for concentrations. For simplicity, we set the 
concentration at  the center of the box equal to the average 
concentration throughout the box; that is c f=m*/vt, 
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where 

a.nd 

The 

where Vi  is the volume of box i. [The box centered a t  (y, z) 
has volume 2?raAzAycos(y/a).] Thus, eq (35) becomes an 
expression for the change in tracer mass in a box as a 
function of the masses in neighboring boxes. 

After some rearrangement for computational con- 
venience, eq (35) becomes 

+(analogous terms due to fluxes through 

+S5At, (36) 

the faces bordering 2, 4, and 8) 

A=Az2?ra cos (q4). 
elements of the matrix A can be obtained by 

comparing eq (8) and (36). It is then possible to check 
that the above scheme has the properties of conservation 
of mass, nonnegative masses, and stability. Take the case 
in which there are no sources (S,=O) and the boundaries 
are impenetrable. Because mass is simply transferred 
from one box to another, tracer mass is clearly conserved 
and eq (11) holds. For example, terms in braces in eq (36) 
are also contributions to ms(t+At), being added to m6(t). 
Because the wind and direct diffusion terms dominate 
the cross-diffusion terms, Kiu at (y+$Ay, z) and anal- 
ogous quantities at  the other borders are greater than 
zero. Thus, the coefficient of m, is negative, and eq (9) 
holds. However, the time step At must be sufficiently small 
that condition (28) is satisfied and m, remains nonnegative. 

Equation (10) also holds. Masses in boxes 1, 3, 7,  and 9 
have nonnegative coefficients because of the form of the 
numerical expression for cross diffusion. The masses in 
boxes 2, 4, 6 ,  and 8 receive direct diffusion from box 5 ,  
which dominates small, negative cross-diffusion terms; in 
eq (36), direct vertical diffusion dominates the explicit 
negative coefficients of m, or m2. Thus, the coefficients 
of all masses other than m5 are nonnegative, and condition 
(10) is satisfied. These arguments are not significantly 
altered if box 5 is on an impenetrable boundary. 

If there are sources, mass is simply added to the box in 
question [see eq (S)]; this does not affect the matrix 
coefficients. However, if the boundary allows outward 
flow of tracer, then the above considerations are changed 

SOo N LATI  TUDE 90"s 

FIGURE 2.-A grid representing the division of the stratosphere 
into boxes. The boxes are generated by moving the grid around the 
earth along the lines of latitude. The bottom border crudely 
approximates the tropopause, through which matter can pass 
only outward via the "gap". The high upper boundary reduces 
the amount of mass flowing out of the top of the model to about 
0.005 of that passing through the gap for our particular source. 

to the extent that the diagonal coefficient for any box on 
the boundary is more negative than if the boundary were 
impenetrable. This corresponds to allowing a fixed fraction 
of the tracer in the relevant box to cross the boundary in 
any time step. Thus, condition (12) rather than condition 
(11) is satisfied. 

5. SAMPLE USE OF NUMERICAL METHODS 

The methods detailed in section 4 have been applied to 
a form of the two-dimensional model of the stratosphere 
used by Gudiksen et al. (1968). 

Equation (36) was used to follow the change with time 
in the distribution of tracer mass in the stratosphere with 
a time-independent point source. Boxes were assigned in 
the two dimensions of latitude and altitude, as shown in 
figure 2. Solid lines indicate impenetrable boundaries, 
while dotted lines indicate boundaries through which 
matter can escape. To obtain a steady result with the 
constant source in the limit t+m, we assumed the eddy 
diffusion coefficients and winds to be time independent. 
Incorporation of their time dependence into the time 
evolution of the system is straightforward if desired. In 
our case, the values of the parameters given by Reed and 
German (1965) for January were adopted. 

The eddy diffusion coefficients and winds were inter- 
polated linearly in space t o  give the appropriate para- 
meters at  the center of the face between each pair of 
boxes. Values of parameters a t  heights above 27 km were 
assumed equal to those at  27 km. 

A source of 1 g/s in the box centered at  24 km and 
28.4'N was assumed. A time step of 0.1 days was chosen, 
satisfying condition (28). The results of a computer run 
using the above methods are illustrated in figures 3 and 4, 
which show contours based upon the concentrations in 
the various boxes. 
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LATl  TUDE 
FIGURE 3.-A contour of the concentration of tracer in the strato- 

sphere 200 days after the introduction of a source in the box a t  
24-km altitude and 28.4ON. Contbur levels are in mass units 
per cubic centimeter if the source introduces one mass unit per 
day. 

GO" 600 300 0" 300 60° 90" 

LAT I TU DE 
FIGURE 4.-Same as figure 3 for 400 days after introduction of 

source. 

Several checks were made to see that the numerical 
methods were satisfying their claimed properties. The 
computer program was checked for negative masses at  
each time step and none was found. Moreover, the increase 
of total tracer mass in any time interval was equal, within 
the expected roundoff error of the computer, to the in- 
crease due to sources less the amount flowing out of the 
penetrable boundaries. , 

Finally, to check the convergence of the distribution, 
we solved the matrix equation for the steady-state solution 
directly. Settihg dm/dt=O in eq ( 6 )  gives the equilibrium 
mass distribution 

A-'S. (37) 
A m= - 

FIGURE 5.-Equilibriurn concentrations of tracer in the stratosphere 
calculated using eq (37) with a source in the box at 24-km altitude 
and 28.4'N. Units are as in figure 3. 

The existence of a unique equilibrium set of masses 
naturally depends on A having no time dependence- 
hence the use of time-independent eddy diffusion co- 
efficients and winds in tracing the time evolution of rn. 
Using a Gaussian elimination method to find A-', we 
determined the final distribution &. The results are 
contouPed in figure 5. After 3-4 yr of time evolution, 
m becomes virtually indistinguishable from A, demon- 
strating satisfactory convergence. 
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